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Data science relies heavily on statistical ideas, though it seems more concerned with prediction than 

statistics, which is more focused on modeling the data production process. This article will argue that 

the data scientist will do well to pay more attention to the likely disconnect between the chosen 

statistical model and the process it tries to emulate. Three learning goals are proposed and illustrated 

with elementary examples to help students grasp the idea. The disconnect is relevant to the replication 

crisis, yet is inadequately discussed in statistical communities. The lessons here are applicable to the 

education of statisticians. 

 

INTRODUCTION 

In its essence, data science seems a new term for data analysis. Novel data types from digital 

innovations drive technical innovations in data analysis, but have little impact on its fundamental 

character. Decades ago, digital representations of images and videos encouraged statisticians to learn 

new manipulation tools, yet “data analysis” did not change its name. However, it is true that 

statisticians have focused much energy on fitting a good model, if not the best model, to a data set, 

putting prediction on the backburner, while the machine learning community made much progress in 

making good predictions. Data science may be a synthesis of the two cultures (Breiman, 2001). 

Frequently, the data set has been collected without having a fixed question to answer. Statisticians 

ought to take a more fluid view of data analysis. It need not proceed in the sequence of formulating 

question, collecting data, analysing data, interpreting results, such as described in GAISE (2016). To 

be fair, a list is a sequence that forces certain choices. Perhaps it is better to present the four 

components in two dimensions. 

Clearly, exploratory data analysis (EDA) and model-fitting are indispensable statistical ideas 

for the data scientist to make sense of the data and to make predictions. These are rightly embraced by 

the typical data science course. The thoughtful discussion of the pedagogical issues by Cobb and 

Moore (1997) is still very compelling. If any update is needed, it might be that the wide availability of 

software packages behooves us to reinforce students' acquisition of the subtler concepts in data 

analysis. This article will focus on the connection of data production and statistical models. Its 

importance to the data scientist will be discussed, and some relevant learning goals will be proposed.  

 

THE IMPORTANCE OF DATA PRODUCTION 

If the data set is already on the desk, it is too late to rue any flaw in the collection process. 

Still, the data scientist ought to find out about how the data were produced. Prediction of future 

observations typically means estimating the means of some subpopulations or strata defined by the 

predictor variables. The caveat is elementary and obvious: garbage in, garbage out. Introductory 

statistics textbooks talk about the importance of random samples for learning about a population. 

Media reports on surveys based on convenience sampling can occasionally be critical, though more 

should be done. However, if the data is multivariate, the caveat seems to be ignored, even by seasoned 

analysts. This could be due to a widespread belief that the problem goes away by modelling, for 

instance by regression. The statistics community seems rather reticent on this issue, a notable 

exception being David Freedman, whose brilliant theoretical and practical contributions can be found 

in Freedman (2011) and other works. At the bottom, the issue is not hard to grasp. If one has a sample 

of convenience, it is quite unlikely that any subsample is representative of the corresponding stratum 

defined by the predictor variables. As a result, biases of unknowable magnitude creep into parameter 

estimates, casting serious doubt on the validity of inference conclusions. I think this is a major cause 

of the replication crisis, besides the technical issues concerning the p-value that came under intense 

scrutiny in the last decade (Wasserstein and Lazar, 2016). More attention should be paid to it, starting 

in the classroom.  

A secondary consideration is about doing inference using software. Given data sets, 

practically all software packages produce estimates, standard errors, confidence intervals, and P-
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values based on some standard models. But the output rarely carries a warning that the procedures 

may not be valid if the underlying model assumptions are inadequate “empirical commitments” 

(Freedman, 2011). Thus the numbers appear definitive, as if the algorithms apply universally, like 

taking the logarithm of a positive real number. It is necessary for the data scientist to know the 

contingency of such outputs on assumptions about how the data were produced, which is a potential 

impetus to look for an alternative analysis if necessary. 

 

LEARNING GOALS 

Here are three learning goals pertaining to data production that should be useful for the future 

data scientist. Each goal will be explained in some detail and illustrated with examples. 

 

[A] Standard inference procedures do not always work 

From a mathematical point of view, this point is not surprising. The properties of inference 

procedures, such as the claim that the standard 95% confidence interval (CI) for a probability of 

success indeed has a coverage probability of 95% with a sufficiently large sample, depend on the fact 

that the data were generated from independent and identically distributed (IID) Bernoulli random 

variables. If it were not so, the properties may not hold. Students need to know this fact as early as 

possible, ideally when they first encounter an example on inference, which is likely before they see (if 

ever) a logical justification of the inference procedures. In order for students to know, it is better for 

them to experience concrete examples, even for theoretically prepared students.  

Example A1. Suppose a simple random sample of size 100 was taken from a population of 5 

million adults, to estimate the proportion who violated some law for controlling an epidemic. Since 

100 is much smaller than 5 million, the draws can be regarded as independent, so that the responses 

(0: no violation, 1: some violation) are like realisations of IID Bernoulli(p) random variables X1, X2, 

…, X100, p being the population proportion of violators. Unknown to the interviewers, a proportion d < 

1 of those who violated the law will admit to it. It is intuitive that the standard procedure will 

underestimate p. Some algebra will convince the student that the estimate will fluctuate around dp, and 

that as the sample size increases, the coverage probability of the standard 95% CI will go to zero. 

Example A2. A large population consists of two subpopulations whose sizes are proportional 

to w1 and w2, where w1 + w2 = 1. Simple random samples of sizes n1 and n2 are taken from the 

subpopulations, where ni is not proportional to wi. The n1 + n2 responses, all 0’s and 1’s, are displayed 

as an unannotated column. Then the standard analysis will yield a biased estimate of the population 

proportion of 1’s.  

Both examples must be demonstrated by computer simulations, which are excellent tools for 

students to learn coding, and also crucially to appreciate frequency-based probability, random 

variables, and to fully grasp the learning goal. For more complicated data sets, it is usually possible to 

propose multiple models, which might be compared in some automated fashion. However, in both our 

examples, the only sensible model is the standard one postulating IID Bernoulli random variables. The 

success probability is not the parameter of interest, and the problem cannot be fixed in an automated 

way. Further investigation into the process of data production is necessary to obtain an appropriate 

procedure. Although extremely simple, binary data occur so frequently in practice and their analyses 

are reported so widely, that it is a social duty to help students get the ideas clearly.  

In many interesting surveys reported in the media, the selection process is not random. For 

example, soliciting responses on the internet is unlikely to yield a representative sample; it is a sample 

of convenience. We are justified to believe that the standard inference will perform even worse than 

our examples. Since it is more challenging to simulate a non-random process on a computer, it is hard 

to use computer simulation to support this belief. 

A more general lesson is that, just because some inference procedure has been applied to a 

data set does not mean its conclusion is trustworthy. 

 

[B] Given a data set with a fitted statistical model, state the model in terms of random variables 

In an abstract sense, a statistical model fitted is a statement about data production. Stating the 

model means saying which numbers are assumed to be realisations of certain random variables, i.e., 

generated from their joint distribution; these belong to the response or dependent variables. The joint 

distribution is to be specified up to the parameters. Ideally, given certain values for the parameters, 
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pseudo-data sets can be simulated in a computer to illustrate the randomness in the model and also to 

verify the inference results or to check the goodness-of-fit of the model. Insightful references for 

teaching this idea at introductory and advance levels are Freedman, Pisani and Purves (2007) and 

Freedman (2009). Example A1 contains a statement of the standard model producing a list of 0’s and 

1’s, so will not be repeated here. 

Example B1. Numerical data yi, xi1, xi2, …, xip are obtained from individual i, where i ranges 

from 1 to n. Let y be the nx1 vector (y1,…,yn) and X be the nxp matrix with entry xij at row i and 

column j. The standard regression or linear model with normal errors can be stated in several ways. 

By entry: For each i, yi is a realization of Yi = β1xi1 + ⋯ + βpxip + εi, where εi ~ N(0, σ2). Y1,…,Yn are 

independent random variables, and β1,…, βp, σ2 are parameters.  

As vector: y is a realization of Y ~ N(Xβ, σ2In), where β = (β1,…, βp) and σ2 are parameters. In is the 

nxn identity matrix. 

Given the popularity of the regression model, asking students to make such statements might 

seem overboard. But without explicit articulation, the model assumptions will not take hold firmly in 

the mind. Powerful software tends to exacerbate the difficulty, since so many models can be fitted 

easily, leaving less time to scrutinise the internal workings of any model. Another important benefit is 

that model articulation emphasises the connection between probability theory and inference, which is 

hard to grasp, and not often taught. In order to see the equivalence of the two statements, the students 

need to know a special property, that uncorrelated normal variables are independent. Hence basic 

knowledge in probability theory also gets reinforced. 

Example B2. In B1, if y’s are either 0 or 1, the standard model is the logistic regression. For 

each i, yi is a realization of Yi ~ Bernoulli(pi), where  

log(pi/(1-pi)) = β1xi1 + ⋯ + βpxip 

Y1,…,Yn are independent random variables, and β1,…, βp are parameters. 

Unlike the linear model, there is no easy way to state the distribution of the random vector Y 

of a generalised linear model (GLM), of which logistic and Poisson regressions are the most 

commonly used special cases. The underlying distribution of a GLM is more elusive than a linear 

model.  

Example B3. In B1, if y’s are non-negative integers, the standard model is the Poisson 

regression. For each i, yi is a realization of Yi ~ Poisson(μi), where  

log(μi) = β1xi1 + ⋯ + βpxip 

Y1,…,Yn are independent random variables, and β1,…, βp are parameters.     

Example B4. Suppose each of n adults is classified as either old (>60 years) or young, and 

either diabetic or not diabetic. There are then three commonly used models for the four counts: n11 (old 

diabetic), n12 (old non-diabetic), n21 (young diabetic), and n22 (young non-diabetic), which add up to n. 

 

[i]  (n11, n12, n21, n22) is a realisation of (N11, N12, N21, N22) ~ Multinomial(n, (p11, p12, p21, p22)), 

where the p’s are proportions summing to 1. 

  

[ii]  (ni1, ni2) is a realisation of (Ni1, Ni2) ~ Binomial(qi,1-qi), where q1 and q2 are proportions. (N11, 

N12) and (N21, N22) are independent random vectors.   

 

[iii]  (n1j, n2j) is a realisation of (N1j, N2j) ~ Binomial(rj,1-rj), where r1 and r2 are proportions. (N11, 

N21) and (N12, N22) are independent random vectors.   

 

[C] Does the model describe the data production process accurately? 

This question usually cannot be answered definitively. Nevertheless, it is useful to try to 

answer it, so as to temper the faith placed on the inference conclusions. An effect supported by a very 

small p-value, even if its size is judged to be practically significant, is not worth much if the 

underlying model is suspect. The discovery might be largely driven by biased data production, and by 

using an unsuitable model, bias in the effect estimate is misinterpreted as genuine signal. 

Generally speaking, model-based analysis of data from observational studies has to be 

approached very cautiously. Even if the data were obtained by a simple random sample from a well-

defined population, the standard model can be wrong because of non-response or response bias, such 

as Example A1. Rigorous surveys typically employ other probability sampling methods than simple 
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random sampling. If such data are analysed by the standard model, say for the purpose of classroom 

teaching, the students must be told clearly that there is a divide between the model and the data 

production process, that there are technical fixes to bridge the gap, which they can learn later. The 

mass media regularly report sensational findings from surveys that rely on samples of convenience. 

Such articles almost never acknowledge that it is extremely unlikely for any model to mimic the rather 

complex mechanism of data production, and therefore, any inference is suspect.  

The simplest association study involves two binary variables. Borrowing from epidemiology, 

the study can be cross-sectional, cohort or case-control. If the data were obtained via simple random 

sampling from either the whole population, the two exposure strata, or the two response strata, then 

[i], [ii] or [iii] in Example B4 is respectively the correct model, provided the strata are large. If the 

parameter of interest is the odds ratio, then remarkably for all three models, the formulae for the 

maximum likelihood estimate and the approximate standard error are the same. However, many 

studies do not employ any probability sampling; it is challenging enough to get any data. This does not 

mean the data are not useful. Many important medical discoveries were made with such data, 

including the harm of smoking. But it ought to put a seed of doubt into inference results. We should 

also watch out for sentences such as “Since the study is cross-sectional, we may assume that the four 

counts are realisations of a multinomial distribution.” A cross-sectional study can be based on a 

sample of convenience. 

The logistic regression model (B2) amounts to independent simple random samples from 

strata defined by distinct combinations of predictor values present in the data set. This view nicely 

separates the prediction challenge into two components: the random part from the simple random 

samples, and the systematic part from the fact that most likely not all strata defined by the predictors 

in the population have been sampled. Using a linear combination to make predictions for unseen strata 

can be quite wrong. For a simple example, let there be p = 2 binary predictors, and suppose individual 

i has (xi1,xi2) = (0,0), (0,1) or (1,0) only, i.e., the (1,1)-stratum is not sampled. Then the logistic 

regression model has to be additive in order to predict the proportion of 1’s in the (1,1)-stratum. 

Obviously, it will be wrong if there is interaction. These points apply to the linear and Poisson 

regression models, with obvious adaptations. 

 

DISCUSSION 

 A data set has been produced by some unknown process. Ideally, there is a method, operating 

on the data set alone, or some auxiliary information, to design a statistical model that mimics the 

process closely. Example A1 shows there is no such thing in the simplest case of binary data. The 

prospect is likely no better for more complicated data types. Hence it is so important for the data 

scientist to develop a good understanding of the distinction between data production and statistical 

models, and the distance that often separates them. 

Pedagogically, B must be come before C: explicit statement of the model precedes and 

facilitates an attempt to inquire the extent to which the model assumptions are rooted in reality. A can 

be anywhere, though it is put in the beginning as I feel the inference of a proportion is sufficiently 

elementary to establish a beachhead for the more demanding tasks in B and C. 

If the three suggested learning goals seem unfamiliar in statistics education, I hope this article 

has made sufficient arguments in favour of their inclusion. Perhaps another consequence of the 

emergence of data science is a message to statistics educators to relook at our beliefs and practice. On 

this note, it is also time for statisticians to adopt a more relaxed attitude towards the concept of a true 

model. Perhaps the main conclusion of a study should be specific predictions about future 

observations, rather than a best guess of the true model, which often degenerates into a set of 

competing models which are too close to distinguish. 

The random variable is a constant appearance in the presentation here, which is suitable for 

students who have some acquaintance with elementary manipulation of random variables acquired 

through, for example, a course in probability theory; a measure-theoretic understanding is not 

necessary. When teaching less-prepared students inference, formal or informal, these lessons ought to 

be included. The box model (Freedman, Pisani and Purves 2007) is a powerful and effective 

pedagogical tool to convey the essential messages in a more elementary way. 
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